Three Dimensional Fluid Structure Interaction Modeling of Hemodynamics with Continuous Postures

نویسندگان

  • Wen-ying Mu
  • Shan-guang Chen
  • Feng-yuan Zhuang
  • Yu Li
چکیده

A sudden postural change may produce symptoms or even syncope mainly due to orthostatic hypotension. To date, most hemodynamic studies in postural change focus on the response of static and definite postures. To quantify cardiovascular hemodynamics characteristics during continuous posture, we developed a three-dimensional fluid-structure interaction mathematical model of hemodynamics with continuous posture. In this model, the rotating inertial forces were introduced. By the finite element method, the distribution of blood flow pressure (DBFP) in the inner carotid artery in ±90° postures was numerically simulated with rotation and gravity concerned or not. The simulations are as follows: (1) whether gravity was considered or not, the DBFP varied from two-dimensional axisymmetrical distribution without rotation to threedimensional asymmetrical one with rotation considered, and extreme pressures occurred in the same positions in the two cases. (2) The effect intensity of rotation is larger than the effect intensity of gravity. So, unlike gravity, rotation affected the DBFP. This indicates that hemodynamic characteristics in certain position during dynamic change of posture obviously differ from that in static and definite posture. This study may provide a novel way to characterize hemodynamics during continuous posture, and consequently help to evaluate the syncope patients, astronauts or pilots and athletes with unexplained syncope more accurately. Keywords— Blood flow pressure, Continuous posture, Gravity, Hemodynamics, Mathematical Model, Rotation, Syncope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit Coupling of One-Dimensional and Three-Dimensional Blood Flow Models with Compliant Vessels

Simulating arterial trees in the cardiovascular system can be made by the help of different models, depending on the outputs of interest and the desired degree of accuracy. In particular, one-dimensional fluid-structure interaction models for arteries are very effective in reproducing the physiological pressure wave propagation and in providing quantities like pressure and velocity, averaged on...

متن کامل

Three-dimensional CFD modeling of fluid flow and heat transfer characteristics of Al2O3/water nanofluid in microchannel heat sink with Eulerian-Eulerian approach

In this paper, three-dimensional incompressible laminar fluid flow in a rectangular microchannel heat sink (MCHS) using Al2O3/water nanofluid as a cooling fluid is numerically studied. CFD prediction of fluid flow and forced convection heat transfer properties of nanofluid using single-phase and two-phase model (Eulerian-Eulerian approach) are compared. Hydraulic and thermal performance of microch...

متن کامل

Concepts and Application of Three Dimensional Infinite Elements to Soil Structure-Interaction Problems

This study is concerned with the formulation of three dimensional mapped infinite elements with 1/r and 1/ decay types. These infinite elements are coupled with conventional finite elements and their application to some problems of soil structure interaction are discussed. The effeciency of the coupled finite-infinite elements formulation with respect to computational effort, data preparation a...

متن کامل

THREE DIMENSIONAL MODELING OF TURBULENT FLOW WITH FREE SURFACE IN MOLD FILLING

In the present study a Finite Difference Method has been developed to model the transient incompressible turbulent free surface fluid flow. A single fluid has been selected for modeling of mold filling and The SOLA VOF 3D technique was modified to increase the accuracy of simulation of filling phenomena for shape castings. For modeling the turbulence phenomena k-e standard model was used. In or...

متن کامل

Thermoelastic Interaction in a Three-Dimensional Layered Sandwich Structure

The present article investigates the thermoelastic interaction in a three-dimensional homogeneous and isotropic sandwich structure using the dual-phase-lag (DPL) model of generalized thermoelasticity. The incorporated resulting non-dimensional coupled equations are applied to a specific problem in which a sandwich layer of unidentical homogeneous and isotropic substances is subjected to time-de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015